
June 10, 2005    Page 1 of 14 

Second Code Improvement Completed 

 
Numerical Simulations For Active Tectonic Processes: 
Increasing Interoperability And Performance 

JPL Task Order: 10650 
 
PARK Documentation Only 

 

Milestone G – Code Improvement      due date: 6/30/2004 

2nd code improvement - further optimization for some codes, pick up others that 
were neglected in 1st improvement - documented source code made publicly 
available via the Web. 

• PARK on 1024 CPU machine with 400,000 elements, 50,000 time steps in 
5 times the baseline code 

• GeoFEST (assuming availability of 880 processor machine) 16M 
elements, 1000 time steps in the same time as the baseline code using 
the PYRAMID AMR libraries 

• Virtual California with N=700 segments for 10,000  time steps in 1 hour or 
less, MPI parallel implementation, running on M-processor machine, with 
2 GB of memory per CPU, speedup of approximately M/2 on up to 256 
processors.  Investigation of fast multipole method for this code. 

 

Team 
 
Andrea Donnellan:  
Principal Investigator 
Jet Propulsion Laboratory 
Mail Stop 183-335 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
donnellan@jpl.nasa.gov 
818-354-4737 

Michele Judd: 
Technical Task Manager 
Jet Propulsion Laboratory 
Mail Stop 183-335 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
michele.judd@jpl.nasa.gov 
818-354-4994 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 2 of 14 

Jay Parker:   
Overall Software Engineer 
Jet Propulsion Laboratory 
Mail Stop 238-600 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
Jay.W.Parker@jpl.nasa.gov 
818-354-6790 

Terry Tullis:   
Fast Multipole Methods 
Brown University 
Box 1846, Brown University 
Providence, RI 02912-1846 
Terry_Tullis@Brown.edu 
401-863-3829 

Geoffrey Fox:   
Information Architect 
Community Grid Computing Laboratory 
Indiana University 
501 N. Morton, Suite 224 
Bloomington, IN  47404-3730 
gcf@indiana.edu 
812-856-7977 

Dennis McLeod:  
Database Interoperability 
Professor 
Computer Science Department 
University of Southern California 
Los Angeles, CA 90089-0781 
mcleod@usc.edu 
213-740-4504 

John Rundle:  
Pattern Recognizers 
Center for Computational Science and 
Engineering 
U. C. Davis 
Davis, CA  95616 
rundle@geology.ucdavis.edu 
530-752-6416 

Gleb Morein:  
Pattern Recognizers 
Center for Computational Science and 
Engineering 
U. C. Davis 
Davis, CA  95616 
gleb@cse.ucdavis.edu 

Greg Lyzenga:   
Finite Element Models 
Jet Propulsion Laboratory 
Mail Stop 126-347 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
greg.lyzenga@jpl.nasa.gov 
818-354-6920 

Marlon Pierce:  
Code Interoperability Software 
Engineer 
Community Grid Computing Lab 
Indiana University 
501 N. Morton, Suite 224 
Bloomington, IN  47404-3730 
marpierc@indiana.edu 
812-856-1212 

Lisa Grant:   
Fault Database Architect 
University of California, Irvine 
Environmental Analysis and Design 
Irvine, CA 92697-7070 
lgrant@uci.edu 
949-824-5491 

Robert Granat:   
Pattern Recognizers 
Jet Propulsion Laboratory 
Mail Stop 126-347 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
robert.granat@jpl.nasa.gov 
818-393-5353 

Maggi Glasscoe:   
GeoFEST Code Verification 
Jet Propulsion Laboratory 
Mail Stop 300-233 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
Margaret.T.Glasscoe@jpl.nasa.gov 
818-393-4834 
 
AD HOC Team Member 
Charles Norton:   
PYRAMID/GeoFEST 
Jet Propulsion Laboratory 
Mail Stop 169-315 
4800 Oak Grove Drive 
Pasadena, CA 91109-8099 
Charles.Norton@jpl.nasa.gov  
818-393-3920 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 3 of 14 

Overview 

This milestone report documents the completion of the PARK portion of the 
Milestone G of the QuakeSim project - Numerical Simulations for Active Tectonic 
Processes: Increasing Interoperability and Performance - for NASA’s Earth-Sun 
System Technology Office, Computational Technology Program.  The text of the 
milestone appears on Page 1 of this report, and requires demonstration of 
substantially larger problems than Milestones E and F (see Table 1 below).  
 

Code Machine 
Wallclock Time Processors Date Elements Time 

Steps 

PARK 
Milestone E  

Chapman 
(AMES) 

7.888 Hours 
1 September 18, 

2002 15,000 500 

PARK 
Milestone F 

Chapman 
(AMES) 

7.879 Hours 

 
256 

 
August 15, 

2003 
150,000 5,000 

PARK 
Milestone G 

Dell Linux 
Cluster (JPL) 

34.518 Hours* 
512 May 27,   

2005 400,000 50,000 

 

Table 1: Computer runs demonstrating baseline, Milestone F performance enhancements and 
Milestone G performance enhancements for PARK.  Note that Milestone G wallclock time beat 
the allowable time of 39.440 hours (five times the baseline run). 

 



June 10, 2005    Page 4 of 14 

 

Milestone G Supporting Documents 

The top-level web site for the QuakeSim task is at http://quakesim.jpl.nasa.gov. 
Source code for the three codes may be found at 
http://quakesim.jpl.nasa.gov/download.html.  Files required for the baseline 
cases may be found at http://quakesim.jpl.nasa.gov/milestones.html. 

 

The PARK Code 

Problem Being Solved 
Compute the history of slip, slip velocity, and stress on a vertical strike-slip fault 
that results from using state-of-the-art rate and state frictional constitutive laws 
on the fault for a specific geographic setting at Parkfield, California.  
The boundary conditions are those appropriate for Parkfield and the distribution 
of constitutive properties on the fault zone are as realistic as our ability to 
characterize the subsurface properties of the fault there allow. The methods 
developed in solving this problem can be generalized to other geologic settings in 
which the fault geometry, the boundary conditions are not so simple and multiple 
faults are involved. 
The grid used in Milestone G has 400,000 elements. The primarily change from 
the 150,000 element model used for Milestone F was a large increase in the 
number of square elements that are 7.4 meters on an edge, there being 273,375 
of these in the current model and only 5040 in the previous model. The increase 
in the number of these fine elements was made in the area of the model where 
the earthquake is expected to nucleate. Some minor adjustments in the number 
of some of the larger elements was made to result in the change from 150,000 to 
400,000 elements. 
 
 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 5 of 14 

 
PARK Documentation 

The main program is a boundary element program that determines the stress on 
every element of the fault surface due to slip on every other element, using a 
Greens function approach. The fault constitutive law is used to determine what 
the slip velocity will be for that stress and this velocity multiplied by the time step 
gives the slip to be used to calculate the stress in the next time increment. This 
involves the forward time integration of coupled ordinary differential equations. 
The integration for previous milestones was done with a fifth order Runge-Kutta1 
scheme with adaptive step size control.  

Because the time-steps range over ten orders of magnitude, depending on 
whether the fault is slipping very slowly in the interseismic period or very fast 
during an earthquake, the adaptive step-size control is an essential element in 
the solution.  

For this milestone the fifth order Rung-Kutta routine that involved six stages, 
namely the determination of derivatives six times for every time step, was 
replaced by a faster second order routine, that involves only two stages and 
reuses the derivatives calculated at the end of the previous time step to begin the 
integration at the beginning of the current time step. The adaptive step size 
scheme is retained. Tests to date show that, as expected, this second order 
routine is 3 times faster per time step than the fifth order one. The disadvantage 
is that each time step is smaller, but tests to date suggest that a given model 
time is reached in essentially the same CPU time as with the fifth order routine. 
For future users who may want to also try the fifth order routine that uses two 
copyrighted subroutines from Numerical Recipes, an alternative version of the 

                                      
1 Runge-Kutta is a method for forward integration of differential equations that involves calculating 
derivatives of the functions at the current time and several fractions of potential time-steps in the 
future, appropriately weighting these derivatives estimating the best derivative value to use and 
determining the value of the function at the new time by multiplying that best derivative by the 
appropriate time-step.  The fifth-order Runge Kutta method compares estimates made using two 
different time-steps and, based on this comparison, determines whether a smaller or larger time-
step should be used for the next step.  This allows for adaptive time-stepping which is extremely 
important in problems such as this where the time-steps can vary as much as ten orders of 
magnitude, depending on whether interseismic or a coseismic behavior is involved. 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 6 of 14 

park.f program is provided that works with those subroutines and contains 
instructions on how to obtain and modify them to work in this application. 

The main program calls a variety of subroutines and the one of these subroutines 
that calculates the derivatives used in the forward time integration itself calls a 
Fast Multipole library that is suitable for such Green's functions problems. The 
Multipole approach allows a number of computations to scale as N log N rather 
than N^2 as would otherwise be the case. The particular Fast Multipole approach 
being used allows determination of the degree of grouping of the remote cells 
based on an analytical approximation to the Greens function. In order to reduce 
computation time it also renumbers the elements so that those that are near in 
space are also near in memory.  

The main program and most of its subroutines are written in Fortran 90. The Fast 
Multipole library and its interface program to the main program and its 
subroutines are written in C. All of these programs run in parallel using MPI. 

 

PARK Scaling Analysis 

In the directory scaling, found in the same 2nd_Code_Improv_Milestone 
directory in which this file is found, are files that show how the job scales with 
number of processors. Sixty six scaling runs were done, on several different 
machines, including the Compaq-HP AlphaServer named halem at the NCCS at 
Goddard, the DEC altix machines, Columbia2 and Columbia17 at NASA Ames, 
and the Dell Linux cluster at JPL.  An attempt was made to do runs for 1, 2, 4, 8, 
16, 32, 64, 128, 256, 512 and 1024 processors in as many of those machines as 
possible, but this was only possible on the JPL Dell cluster, 256 CPUs being the 
maximum number tested on halem and columbia2 and 512 being the maximum 
number on colubia17. The scaling tests were done on models with 150,000 
elements on halem and columbia2, and 400,000 on Columbia17 and the JPL 
cluster. The number of time steps used in these scaling runs varied from 17 to 
100, depending on the machine and time available for the tests, some of which 
were done with the entire machine dedicated to the tests, whereas the full 
400,000 element, Second Code Improvement Milestone run was done for 50,000 
time steps. In the scaling directory is a data table giving the time per step for all 
the scaling runs, as well as plots showing dependence of time per step, 
efficiency, and overhead on number of processors. 

The scaling data show that not much speedup is gained by going from one to two 
processors, a problem that existed in the scaling in the First Code Improvement 
Milestone that we have not been able to solve, although extensive efforts were 
made by the scientists working on this code and by several experts at all three of 
the sites where the code was run. Whether this problem could be fixed in the 
future is not clear. It may be an intrinsic problem in the Fast Multipole Library, 
although for the astrophysics application the library was originally created for this 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 7 of 14 

problem has not been seen. Some continued work on this problem may be 
warranted, since solving it would decrease run times by a factor of two. 

Efficiency and overhead are nearly constant from 2-64 processors on all 
machines tested, but it falls off at the largest number of processors for all 
machines tested, due to too much time spent in interprocess communication. The 
behavior is most easily seen on the overhead plots, as well as by examination of 
the tables. For halem it rises somewhat going to 128 CPUs and in going to 256 
CPUs it increases drastically, the time to run on 256 being greater than on 128. 
For Columbia2 and Columbia17 the scaling is good to 256 CPUs but on 
Columbia17 for which a 512 CPU run was done, it increases drastically for 512 
CPUs, taking more time than on 256. Similar behavior was found on the JPL Dell 
cluster, in which the time on 512 and 256 CPUs was the same. The behavior on 
1024 CPUs was even worse, it taking considerably more time than on 512 CPUs. 
As a result of this behavior, the 50,000 step Second Code Improvement run was 
actually done on 512 processors on the JPL Dell cluster. The milestone could 
equally well have been met on 256 CPUs. Due to the poor scaling above 256 
CPUs on all machines tested, the only way the milestone was able to be met was 
to combine the advantages of 1) using the second order Runge Kutta integration 
scheme and 2) running on the fastest of all the machines tested, namely the JPL 
Dell cluster. The relative speed of the different machines can be see both in the 
tables and in the plot of time per step vs. number of CPUs. 

The implications of these scaling runs is that it is important to do scaling tests on 
any new machine the code may be ported to and, with the results of that 
available, to run it on a small enough number of processors that the inter-process 
communication does not dominate the behavior. With their current hardware, on 
Columbia and the JPL cluster the largest number of processors that should be 
used is 256. The usable number of processors might increase if many more than 
400,000 elements were used, but the behavior is similar for both 150,000 and 
400,000 elements. 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 8 of 14 

 

PARK Walltime/Time Step (hours) 

Machine No. 
Elements 

CPUs 

JPL Dell Cluster  
400,000 

Columbia17/15 
400,000 

Columbia8 
400,000 

Columbia8 
150,000 

Halem 
150,000 

Halem *  
150,000 

Chapman 
150,000 

1 0.08181 0.24895 0.39817 0.15203 0.06953 0.06189 0.07963 

2 0.07658 0.23382 0.37647 0.14384 0.06873 0.06023 0.07699 

4 0.04743 0.14639 0.24136 0.07318 0.03270 0.02883 0.04039 

8 0.02232 0.06639 0.11003 0.03783 0.01857 0.01626 0.02027 

16 0.01234 0.03642 0.05995 0.02422 0.01221 0.00836 0.01290 

32 0.00665 0.02014 0.03266 0.01259 0.00633 0.00551 0.00644 

64 0.00358 0.01105 0.01739 0.00668 0.00426 0.00354 0.00347 

128 0.00206 0.00719 0.01015 0.00388 0.00413 0.00312 0.00203 

256 0.00145 0.00383 0.00598 0.00251   0.00369 0.00158 

**256 0.00127             

512 0.00128 0.00905           

1024 0.00229             

                

 Table 2: The data shown here are for the 6-stage, fifth order Runge Kutta routine and so the 
times are 3 times longer than would be the case if the 2-stage second order routine were used as 
was the case for the 50,000 time step milestone run. Blank entries indicate no run done for that 
machine on that number of CPUs. *The runs on halem in this column were done with incorrect 
keys, so the timing relative to the other correct runs is not useful, but it is the only 256 CPU run 
done on halem and consequently it is included since the scaling data is perfectly valid. The data 
for this column are shown in the Efficiency and Overhead plot, but not in the walltime plot. ** Only 
17 time steps were used for the rows above this one on the JPL Dell, but the data in this and the 
next two rows were based on 100 times steps. The larger number of time steps gives more 
accurate data, but the difference is small as shown in the accompanying plot and by comparing 
this and the row above.  

 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 9 of 14 

 

 

Number of processors

W
al

lti
m

e/
st

ep
,h

rs

100 101 102 103

0

0.1

0.2

0.3

0.4

Comparing Walltime on Columbia8, Columbia17/15,
JPL Dell Cluster, Chapman, and Halem

Columbia8
Chapman (1.87 times faster than Columbia8)

150,000 elements

Note that Columbia is slower
compared to the other machines
for the same sized job.
Comparisons above made for the
8 CPU runs for which the efficiency
is nearly the same for all machinhes

JPL Dell Cluster

Halem (2.04 times faster than Columbia8)

Columbia8 (4.93 times slower than JPL Dell)
Columbia17/15 (2.97 times slower than JPL Dell)

400,000 elements

1024
5122561286432168421

Figure 1  PARK Walltimes. 

PARK



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 10 of 14 

 

 

 

 

 

Number of processors

E
ffi

ci
en

cy

O
ve

rh
ea

d
100 101 102 103-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Thick lines overhead
Thin lines Efficiency

Efficiency and Overhead Compared on
Chapman, Halem, Columbia8, Columbia17/15, and JPL Dell Cluster

JPL Dell Cluster (400,000 elements)

c15

256

Columbia17/15 (400,000 elements)

c17

1024

16 12832 64
1

82 4

Chapman (150,000 elements)

512

Columbia8 (400,000 elements)
Halem (150,000 elements)

Figure 2: PARK: Efficiency and overhead comparison. 

PARK



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 11 of 14 

PARK Scientific and Computational Significance 

Achieving the Second Code Improvement Milestone is significant because it 
opens the way to run significant sized problems since the earthquake code as 
well as the Fast Multipole library run in parallel under MPI.  It presents to the 
scientific community fast parallel codes that allow creating simulations of the 
entire earthquake cycle in a 3D model that uses the most accurate description of 
fault friction, rate and state friction, and the quasi-dynamic radiation damping 
approximation to full elastodynamics. We have shown that the code can be run 
using a very large number of elements in the model compared to what could be 
done in the past.  

This means that enough elements can now be used that is it possible to 
represent a reasonably sized fault with elements that are small enough that they 
can properly represent the behavior of a continuum. Larger numbers of elements 
also allow occurrence in the simulation of earthquakes with a large range of 
sizes. This means that it will be possible to study in the simulations in what 
situations small earthquakes occur in isolation and in what situations they may 
cascade or grow into larger ones. This could help gain an understanding of 
whether patterns of microseismicity might be used to help predict earthquakes. 
The attainment of this milestone not only represents an advance in our 
computational ability to simulate earthquakes, it will allow us to understand the 
earthquake process better by creating data sets that can be compared with data 
on real earthquakes. 

 

PARK Simulation details 

Code and documentation can be found at the web site  
http://www.servogrid.org/slide/GEM/PARK/.  
 
Within the appropriately named subdirectories under the 
 2nd_Code_Improv_Milestone directory in which this file is found can be found 
all the necessary material that describes the Second Code Improvement 
Milestone and gives instructions that would allow one to duplicate it. Included in 
the "in" and "out" directories are all the materials from the Second Code 
Improvement Milestone run with 400000 elements and 512 processors for 50,000 
time steps. For code testing purposes on one's own system it is useful to set the 
number of time steps in the prk.dat.400003 file to a smaller number than 50000 
for the initial run; even 1 or 2 would be reasonable for the first run. 
 
The materials in these directories include: 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 12 of 14 

Milestone_Certification_Data.txt - a file that gives the time required for the 
Second Code Improvement run and describes various parameters of the run. 
README-setting_up_input_files.txt - a file that tells one how to understand the 
input files including an explanation of how the elements are created from the 
input files. 
README-Compile.txt - a file that tells how to create both the multipole library 
and the PARK fault files using the appropriate Makefiles. 
in - a directory that contains the input files that were used in the Second Code 
Improvement run. 
out - a directory that contains the output files that were generated in the Second 
Code Improvement run. 
src-bin - a directory that contains the PARK and related fault application files 
used in the Second Code Improvement run.  
scaling - a directory that contains data and plots showing how execution time 
depends on number of elelents and processors. One file is a table giving the 
walltime per step for many scaling runs. One file is a Microsoft Word file with 2 
imbedded plots that show the dependence on number of processors of  

1) execution time 
2) efficiency and 
3) overhead.  

In addition these 2 plots are also contained, one each, in 2 separate 
WindowsMetafile files. 
downloads - a directory that contains a unix-compressed tar file, 
PARK_Package_2nd_Improv.tar.Z, that allows one to generate the files needed 
for the Second Code Improvement run. This compressed file is the only place on 
the website where all the files for the Fast Multipole Library can be found, since 
these are too large for convenient storage or downloading in their uncompressed 
form. All of these library files are in the t17-7 directory. If one wants to use the 
copyrighted Numerical Recipes routines that use the fifth order Runge Kutta 
scheme, please see either the README-src-bin.txt file in the src-bin directory or 
the header for the park.f file to learn what needs to be done to create the 
Numerical Recipes subroutines.  
t17-7 - A directory containing the Fast Multipole Library. This is not explicitly 
included in the directory structure on the web site, but is in the directory structure 
that will be created when the compressed tar file is obtained, uncompressed and 
extracted.  
 
The tar files were created in the following way.  
 



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 13 of 14 

While in the directory containing the 2nd_Code_Improv_Milestone directory, the 
following command was issued: 

tar -cvf PARK_Package_2nd_Improv.tar 2nd_Code_Improv_Milestone 
 
Then the .tar files were compressed by issuing: 

compress PARK_Package_2nd_Improv.tar 
to produce the PARK_Package_2nd_Improv.tar.Z file. 
 
These can be uncompressed and the directory str4ucture and files restored on 
unix systems by issuing: 

uncompress PARK_Package_2nd_Improv.tar.Z  
and then 

tar -xvf PARK_Package_2nd_Improv.tar 
 

The Second Code Improvement Milestone run was as follows: 
It had 50000 time steps and 400000 elements. It was run using 512 processors 
of the Dell Linux cluster at JPL and finished on Fri May 27, 2005 at 22:45:39. It 
was run by Charles Norton of JPL since Terry Tullis did not have access to this 
machine and Charles had done all the work to get the code running on the Dell 
cluster.  
The execution time for the job can be seen from the output file: 

prk.clocktime.400003  
that can be found in the "out" directory that is contained in the directory in which 
this certification file resides on the website. The content of this file is copied here 
below 
------------------------------------------------------------------------------------------------------------ 
  Thu May 26 12:14:33 2005 
            1  7.215867116311745E-013  3.607933558155872E-013 
  Thu May 26 12:14:52 2005 
 
        50000  1.904683118783539E-002  9.626188434109848E-007 
  Fri May 27 22:45:39 2005 
  Fri May 27 22:45:39 2005 
------------------------------------------------------------------------------------------------------------



Milestone G – Second Code Improvement 

June 10, 2005 JPL Task Order 10650 Page 14 of 14 

 
The execution time can be found by taking the difference between the last time in 
this file, which is reported just before program termination, and the first time in 
this file, which is reported just after the program begins. 
 
This difference is 34.5183 hours or 34h1m06s. This elapsed time has been 
shown from earlier tests to be essentially identical to the elapsed time one 
obtains by using the unix "time" command. 
 
As required for this Second Code Improvement Milestone G, this time is less 
than 5 times that for the Baseline Milestone run. For comparison with the time for 
this Second Code Improvement Milestone G, The Baseline Milestone E run took 
7h53m8.23s of real time according to the "time" command, or 7.8897 hours. Five 
times this is 39.4486 hours or 39h26m55s, greater than the Milestone G run. 
 

PARK References 

Salmon, John K, and Michael S. Warren, Parallel out-of-core methods for N-body 
simulation. In Michael Heath, Virginia, Torczon. et. al., editiors, Eighth 
SIAM Conference on Parallel Processing for Scientific Computing, SIAM, 
1997. 

Michael, S. Warren, John K. Salmon, Donald J. Becker, M. Patrick Goda, 
Thomas Sterling, and Gregoire S. Winckelmas. PentiumPro Inside: I. a 
treecode at 430 Gflops on ASCI red, II. Price/performance of $50/Mflop on 
Loki and Hyglac. In Supercomputing, ’97, Los Alamos, 1997, IEEE Comp. 
Soc. 

 


